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The notions of strong uniform stability of the zero solution of systems of differ- 
ential equations and uniform stability with respect to the impulsive perturbations 
of the zero solution of systems of impulsive differential equations are introduced. 
The main results are given in two theorems. The first contains sufficient conditions 
under which the strong uniform stability of the zero solution of the respective 
system without impulses implies uniform stability with respect to the impulsive 
perturbations of the zero solution of the initial system with impulses. In the 
second theorem sufficient conditions are given under which the uniform Lipschitz 
stability of the zero solution of the respective system without impulses implies 
uniform stability with respect to the impulsive perturbations of the zero solution 
of the initial system with impulses. 

1. INTRODUCTION 

Numerous evolutionary processes during their development are subject 
to short-time perturbations. In many cases the duration of these perturba- 
tions is comparatively small and we can assume that they are realized 
momentarily in the form of impulses. An adequate mathematical model of 
such processes is given by the systems of ordinary impulsive differential 
equations which are the object of investigation of the present paper. Because 
of the complexity of these systems, it is possible to find their solutions in a 
closed form only in exceptional cases. That is why it is appropriate to develop 
their qualitative theory. Many papers (e.g., Mil'man and Myshkis, 1960; 
Pandit, 1977; Rao and Rao, 1977; Simeonov and Bainov, 1986) have pro- 
posed specific criteria for stability of the solutions of systems of ordinary 
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impulsive differential equations. The definitions of  stability introduced in the 
cited papers represent a modification of  the respective classical definitions. In 
this paper a type of  stability characteristic only for solutions of  this type of  
system is introduced, namely uniform stability with respect to the impulsive 
perturbations. 

2. STATEMENT OF THE PROBLEM 

Consider the following initial value problem for systems of  impulsive 
differential equations: 

dx 
-~f=f(t ,  x), t r  ri (1) 

A x (  t) lt= Ti ~- bi(X( T,) ) (2) 

X(To) =Xo (3) 

where f :  R+x  D--+R ~, R += [0, +oo), D is a domain in R~; I;: D-+R" ,  i=  
1, 2 . . . .  ; (To, Xo)sR + x D; and 

Ax( t ) [ t  = ~, = X(Ti  + O) -- X (T i )  

At the moments T1, r2 . . . .  ( T ~ < r 2 < ' ' ' )  the integral curve of  problem 
(1)-(3) meets some of the hypersurfaces 

ai:  t =  ti(X),  i= 1, 2 , . . .  (4) 

where ti: D ~ R +. In equality (2) by ji we have denoted the  number of the 
hypersurface met by the integral curve of  the problem considered at the 
moment r;, i=  1, 2 . . . . .  We note that in general ir [see Example 1 of  
Dishliev and Bainov (1985)]. The solution of problem (1)-(3) is a piecewise 
continuous function with points of  discontinuity TI, r2, �9 �9 �9 of  the first kind 
at which it is continuous from the left. In more detail, the solution of  problem 
(1)-(3) is defined as follows: 

(i) For r0_< t < ~1 it coincides with the solution of  problem (1), (3). 
(ii) For r~<t_<T/+l it coincides with the solution of  system (1) with 

initial condition 

X ( T i +  O) = X(T i )  + Iji(X(Ti)), i= 1, 2 . . . .  

If after an impulse the integral curve again hits a hypersurface of  (4), 
i.e., if ri=&(x(r~)+Ij,(x(ri))), i, k~{1, 2 , . . .  }, then a new impulse at the 
moment r~ is not realized. 

Introduce the following notation: xt(t; To, Xo) is the solution of prob- 
lem (1)--(3). The index I shows that the magnitudes of the impulses are 
determined by means of the set of functions I= {L, i=  1, 2 . . . .  }. Denote 
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the solution of the respective initial value~problem without impulses (1), (3) 
by x(t; to, Xo). Introduce the sets ~ = { (t, x); tg_ l(x) _< t < ti(x), x eD},  i= 
1, 2 . . . . .  to(X) =0 for xeD.  By I[ " [l we denote the Euclidean norm in R ". 
Introduce also the following sets: B8 = {x; J[x[I < 8}, 8 > 0; if the set A ~ ~ ,  
then Be(A)= {x; fix-all < 8, a sA  }, Ba(;g)= ;~; ?A is the set of all bound- 
ary points of A; C[X, Y] is the set of  all continuous functions ~o: X--* Y. 

3. PRELIMINARY NOTES 

We say that conditions (A) are satisfied if the following conditions 
hold: 

A1. The function fe [R+ x D, R n] and is locally Lipschitz continuous 
with respect to x in D with a constant independent of t. 

A2. There exists a constant M > 0  such that Hf(t,x)Jl<_M for 
(t, x ) ~ R  + x D. 

A3. For any point (r0, Xo) ER + x D the solution of  the problem without 
impulses (1), (3) does not leave the set D for t >  r0. 

A4. The functions ti are Lipschitz continuous with respect to x in D 
with respective constants L~< 1/M, i= 1, 2 . . . . .  

A5. 0 < h ( x ) < t 2 ( x ) < "  �9 �9 , x~D. 

Lemma 1 (Dishliev and Bainov, 1988). Let conditions (A) hold. Then, 
if (r0, Xo)e Oi, the first hypersurface met by the integral curve (t, x(t; to, xo)) 
for t > ro is o" i . 

Definition 1. We say that the solution xz(t; to, Xo) of problem (1)-(3) 
is quasiunique if in any of the intervals (ri-1, ri], i=  1, 2 . . . . .  the solution 
of the problem without impulses 

dx 
-dr =f( t ,  x), X( T i - l )  "~- XI ( Ti-- I ; TO, )CO) dV Iji-I (XI ( Ti -  I "~ TO, XO) ) 

is unique. 
We shall note that by Definition 1, after an impulse it is possible for 

different integral curves to merge. This is due to the fact that some of the 
functions (E+  Ii) may not be bijective. Here E is the identity in R n. 

By xt.(t;  Z'o, Xo) we denote the solution of the following system with 
impulses: 

dx 
=/( t ,  x), t #  r,-* (5) 

Ax(t)],=~ =I*(x(r*)) ,  i=  1, 2 . . . .  (6) 
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with initial condition (3), where I* : D ~ R"; r* ,  r* . . . .  (r* < r* < . .  �9 ) are 
the moments at which the integral curve (t, xi ,( t;  to, Xo)) meets the hyper- 
surfaces (4) and si is the number of the hypersurface met by this integral 
curve at the moment r* ,  i=  1, 2 . . . . .  Note  that in general s ~ j i ,  i= 2, 3 , . . . ,  
i.e., the hypersurfaces met successively by the integral curves 
(t, x1,(t; r0, Xo)) and (t, xz(t; to, Xo)) may not coincide. We shall use the 
notations x* = x1,(r* ; to, Xo) and x *+ = x* + I*(x*),  i= 1, 2 . . . . .  

We say that conditions (B) are satisfied if the following conditions hold: 
B1. There exists a constant A > 0  such that (E+I ; ) :  D ~ D \ B a ( O D ) ,  

i = 1 , 2 , . . . .  
B2. t~(x) ~ ~ as i ~ ~ ,  uniformly with respect to x e D. 
B3. There exists a constant d>  0 such that for any point x e D  and i=  

1, 2 . . . .  we have ti(x) > ti(x + It(x)) + d. 

Lemma 2. Let the following conditions be satisfied: 
1. Conditions (A) and (B) hold. 
2. qlI*(x)-  I~(x)ll <rain(A, Md) ,  x~D,  i= 1, 2 , . . . .  
Then for any point ( to,  x0)eR + x D the solution xz,(t; "co, Xo) of prob- 

lem (5), (6), (3) is quasiunique and continuable for any t > to. 

P r o o f ' L e t  (ro, Xo)eR+xD.  In view of condition B1 and the 
inequalities 

III~*(x)-I/(x)l! <A, x~D, i=  1, 2 , . . .  

we establish that ( E +  I* ) '  D---, D. From the last relation and condition A3 
it follows that the solution Xl,(t; r0, Xo) exists and does not leave the set D 
in its definition domain. The quasiuniqueness of the solution follows from 
condition A1. It remains to show that xz,(t; r0, x0) is continuable for any 
t > "Co. The following two cases are possible: 

(i) The integral curve (t, xi ,( t ;  to, x0)) for t > Zo meets a finite number 
of hypersurfaces of (4). We shall note the fact that this case is possible only 
if the domain D is unbounded. Let the meetings be realized at the moments 
r~', r* . . . . .  ~-~. Taking into account that x~+sD as well as condition A3 
and the equality 

x(t; r~, x~ +) =xr , ( t ;  r0, x0) 

which is fulfilled for t > r ~ ,  we conclude that xz,(t; r0, Xo)~D for t > r ~ .  
Hence in this case the solution of problem (5), (6), (3) is continuable for 
any t > ~:0. 

(ii) The integral curve (t, xr,(t;  to, x0)) meets for t>  ro infinitely many 
hypersurfaces of (4). First we shall show that 

si< st+ 1, i=  1, 2, . . . (7) 
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i.e., that the numbers of the hypersurfaces met successively by the integral 
curve (t, x1.(t; r0, xo)) are increasing. From conditions B3 and A4 and con- 
dition 2 of the lemma we obtain 

r~* - t ~ , ( x U )  

= 6,(x*) - 6,(x* + I~(x*)) + 6,(x* + I~(x*)) - 6,(x* + I*(x*)) 

>_ d -  II t~,(x,* + I,,(x,*) ) - t, ,(x7 + I~ (x~ )  )II 

> d -  L~,HL(x*) - I* tx*~  H 
- -  t S i  ~. l ] 1 [  

>_d-L, ,Md>O 

From the last inequality and condition A5 we establish that the point 
(r~, x *+) ef2k, where k > si. But then by Lemma 1 the first hypersurface met 
by the integral curve (t, x(t; r*, x*+)) for t >  r* is ak. The last conclusion 
means that for t>  r* the integral curve (t, Xl.(t; To, Xo)) meets first the 
hypersurface or,. Hence si+~=k and si+~>s~, i.e., equalities (7) are valid. 
Then in view of the fact that si are integers, we obtain that si ~ ~ as i ~ 0% 
whence by condition B2 we find that 

lim r* = lim ts~(X*) = 

From the last relation and the fact that the solution of problem (5), (6), (3) 
is defined and unique in any of the intervals (r~-_~, r~], i= l ,  2 , . . .  ,we 
deduce the assertion of the lemma in this case as well. 

Thus Lemma 2 is proved. [] 

In the following example we shall show that if condition B3 is violated, 
then the assertion of Lemma 2 may be not valid. 

Example 1. Let n = 1 and D = (-0o,  + ~ ) .  Consider the following initial 
value problem: 

dx 
- - = 0 ,  t~r~;  Ax(t)lt=r~=Ii(x(-G)), i = 1 , 2 , . . . ;  x(0)=x0 (8) 
dt 

where the impulse functions I~ are defined by the equality 

L ( x ) = i ( x ) = I 1 / x ' x ,  lxl ->1 
((Ixl- 1)x, Ixi < 1 

and the impulse hypersurfaces (in this example the impulse curves) are of 
the form 

cry: t=t~(x)=arctglxl+i~,  x s D ,  i = 1 , 2  . . . .  
2 
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Let e be an arbitrary positive number. Consider the respective perturbed 
initial value problem 

dx 
- - = 0 ,  t ~ r * ;  Ax( t ) l t=~r=I*(x ( r* ) ) ,  i = 1 , 2 , . . . ;  x(0)=Xo (9) 
dt 

where I * ( x )  = Ii(x) - sign(x) s, x ~ D .  
It is trivial to verify that for problem (8) conditions A1-A5, B1, and 

B2 hold. Moreover, it is clear that 

III*(x) - Ii(x)[I = ]I*(x) - Ii(x)] = e, x e D  

In spite of this, however, if I xol > max{ 1, 1/s}, then the solution of problem 
(9) is not continuable for t > Jr. In this case the integral curve of (9) meets 
infinitely many times the hypersurface (curve) o-. This phenomenon is called 
"beating." This phenomenon is considered in more detail in Dishliev and 
Bainov (1985). 

We stress explicitly that for the impulse curves and the impulse functions 
of the example we have 

t i (x)>_t i (x+Ii (x)) ,  x e D ,  i=  1, 2 . . . .  

but condition B3 is not satisfied. 
We say that conditions (C) are satisfied if the following conditions hold: 
C1. f ( t ,  0)=0,  t E R  +, O~D. 
C2. I;(0) = 0, i = 1, 2 . . . . .  
From conditions (C) it follows that xz( t ;  r0, 0 )=  0 for t >  to. 

Definition 2. We say that the zero solution of system (1), (2) is 
uniformly stable with respect to the impulsive perturbations if (V e > 0) (~ 6 = 
6(e) > 0) (V(r0, Xo) ~ R + x (Bs c~ O))  (Vl*:  O ~ R ~, [[I*(x) - Ii(x) 1[ < 6 for 
x ~ D ,  i=  1, 2 , . . .  ) =*-I[Xz,(t; r0, Xo)ll < e for t > r 0 .  

We recall the following definition. 

Definition 3. We say that the zero solution of system (1) is uni- 
formly stable if ( r e > 0 )  (36-" 6(e) >0)  (V(r0, Xo)eR  § x (Bs ~ D))  =*, 
Ifx(t; to, x0)[I < e for t_> "Co. 

In the above definition, to any e > 0 there correspond infinitely many 
constants 6 > 0. Moreover, for any 6 corresponding to e we have 6 _< e. 
Henceforth by 6 (e) we shall denote the smallest upper bound of all 6 satisfy- 
ing Definition 2. For each e > 0 we construct the sequence of numbers 

& = ~ ( s ) ,  62=3(&)  . . . . .  &--6(S~-3 . . . .  
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The inequalities 

~i>0, ~i+1~6i,  i = 1 , 2 , . . .  

hold, hence the sequence 61, 8 2 , . . .  is convergent. Denote by 8" = cS*(e) its 
limit. 

Definition 4. We say that the zero solution of  system (1) is strongly 
uniformly stable if it is uniformly stable and for any ~> 0 the inequality 
~*(e) > 0 holds. 

Sufficient conditions for strong uniform stability are contained in the 
following lemma. 

L e m m a  3. Let the following conditions hold: 
1. The zero solution of  system (1) is uniformly stable. 
2. (-q~ > 0) (V(r0,)Co)~R + x (B~ c~ D)) the function q~(t)= [Ix(t; r0, Xo)IJ 

is monotone decreasing for t_> "co. 
Then the zero solution of  system (1) is strongly uniformly stable. 
In fact, from condition 2 it follows that for any e > 0  we have 

8 * ( e ) = e > O .  
In the following example we shall consider an equation for which the 

equality d~(e)= e is not satisfied for any ~>0.  In spite of  this, the zero 
solution of  this equation is strongly uniformly stable. 

Example  2. In this example by x( t ;  to, Xo) we denote the solution of  
the problem 

dx 
-dt = f ( t ,  x) ,  x("co) = xo 

where 

f - 2 x t ,  (t, x ) e R  + • [0, 1] 

f ( t ,  x)  = ~ - 2 x [ t  + (1 - x )K] ,  (t, x) e R + x (1, 2) 

~ - 2 x ( t - K ) ,  (t, x ) e R  + • [2, oo) 

K is a positive constant and ("co, Xo)~R + x R +. The problem considered has 
a unique solution continuable for any t > "co. Moreover, for any Xo > 0 we 
have 

x( t ;  "co, Xo)>0 

Then, taking into account that 

f ( t ,  x)  <_ - 2 x ( t -  K )  

for t_> Vo 

for ( t , x ) ~ R  + •  + 
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we find that 

0 < x ( t ;  Zo, Xo)<_Z(t; Zo, Xo) (10) 

where Z(t; to, Xo) is a solution of  the initial value problem 

(ix 
- - =  - 2 x ( t -  K), x(ro) = Xo 
dt 

It is easy to see that Z(t; to, Xo) = Xo exp[ ( ro -  K) 2 - ( t -  K)2]. Consequently, 
in view of (10), we conclude that the zero solution of  the problem considered 
is uniformly stable. Moreover, we have: 

(i) ~ ( e ) =  e for 0 < e < l .  
(ii) e e x p ( - K  z) < fi(e) < e for 1 < e<2 .  

(iii) fi(e) = e e x p ( - K  2) for e>2 .  
From this we conclude that 

•*(e) > e e x p ( - K  2) > 0 

i.e., that the zero solution of  the problem of this example is strongly 
uniformly stable. 

Lemma 4. Let the following conditions be fulfilled: 
1. Conditions A1, A3, and C1 hold. 
2. The zero solution of system (1) is strongly uniformly stable. 
Then (VroER +) (Ve > 0) 

(Vxo~B~.~D, 6*=fi*(e))~l lx( t;  ro,Xo)ll<S* for t > r 0  

Proof Let e > 0 ,  f i l=fi(e) ,  8 2 = ~ ( ~ 0 , . . . ,  6*=l imi_~  &, and 
(to, x0)eR § x (B~, c~ D). Then, since IIx011 < fii, then 

IIx(t;120, Xo)l l<Si-i  for t>_r0, i = 1 , 2 , . . . ,  f io=e  

Hence 

Nx(t;ro, Xo)jl<6* for t>_'ro 

This completes the proof  of  Lemma 4. �9 

Definition 5 (Dannan and Elaydi, 1986). We say that the zero solu- 
tion of  system (1) is uniformly Lipschitz stable if (3G>0)  (3g>0)  
(V(ro, Xo)~R + x (Bg ~ D)) =*'l[x(t; 1:o, Xo)l[ < allxoll for t_> to. 

4. MAIN RESULTS 

Theorem 1. Let the following conditions be fulfilled: 
1. Conditions (A), (B), and (C) hold. 
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2. The zero solution of system (1) is strongly uniformly stable. 
3. Ilx+Ii(x)[[ <_ tlxll/(1 +co), x~D, i=  1, 2 . . . . .  co>0. 
Then the zero solution of  system (1), (2) is uniformly stable with respect 

to the impulsive perturbations. 

Proof Let roaR + and e > 0, and let 8* = fi*(e) _ e, 8* be the respective 
constant in the definition of strong uniform stability of  the zero solution of 
system (1). Introduce the notation 8=rnin(A, M6, r +0))). Let the 
functions I* satisfy the inequalities 

]lI*(x)-Ii(x)lt<fi for xED, i = 1 , 2 , . . ,  

Then by Lemma 2 for any point xo~D the solution x1.(t; To, Xo) is quasi- 
unique and continuable for t>vo. Let IIx01f < 6 < 6 * .  From Lemma 4 it 
follows immediately that 

l]xi*(t; 7:o, Xo)[l=f[x(t; Zo,Xo)ll<f*<E, r o < t < r *  

From condition 3 of the theorem and the above estimate for t = r* we find 

*+ * �9 [IX*+[] = ][xl Isl(x,)[/ 

--< I)x* + L,(x*)II + III*(x*) - ls,(xD II 

< fix*l[/(1 + 0)) + o)6"/(1 + 0)) < 8* 

Again by Lemma 4 we obtain 

Ilxz*(t; ~'0, Xo)H = IIxI*(t; z'~', x~+)l[ 
= I I x ( t ;  r?, x*+)ll 
<8*_<e, r* < t__< r* 

By induction we obtain the estimates 

Itxz.(t; to, x0)lt < 8"_< ~, r * l < t _ < r * ,  i = 1 , 2  . . . .  

This completes the proof of Theorem 1. [] 

Theorem 2. Let the following conditions be satisfied: 
1. Conditions (A)-(C) hold. 
2. The zero solution of system (1) is uniformly Lipschitz stable with a 

constant G. 
3. I[x + Ie(x)ll <_ llxll/(G+ 0)), x~D, i=1 . . . . .  0)>0. 
Then the zero solution of system (1), (2) is uniformly stable with respect 

to the impulsive perturbations. 

Proof Let g be the respective constant in the definition of uniform 
Lipschitz stability of the zero solution of  system (1), roeR +, let e be an 
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arbitrary positive constant, and 8 =min(A, Md, g, 6(G)). Let the functions 
I*  satisfy the inequalities 

III*(x)-Ii(x)[l<co6/(G+co) for xeD, i - 1 , 2  . . . .  

From Lemma 2 it follows that for any point xoeD the solution 
xt.(t;  to, Xo) is quasiunique and continuable for t>_ vo. Let LIxoLI < S <__g. 
Then we obtain 

Ilxz.(t; To, Xo)l[--Ilx(t; to, Xo)ll < a 3 <  e, 

Moreover, we have 

ILx*+ll = llx* +I*(x*)ll  

Hence 

[Ix* + I~,(x*)]l + I)I*(x*) - L,(x*)II 

]lx* II/(a + 09) + o~  /( a + co) ~ ~ ~g  

ro<t_<r?  

Nxt*(t; to, Xo)N = j[xz,(t; r*,  x~'+)ll 

= IIx(t; r~, x~+)ll 

< G 3 < e ,  ~ :*< t<r~  

Finally we find by induction 

NXl*(t; Vo, Xo)[I < e, 

This completes the proof  of Theorem 2. 

r * _ ~ < t < v * ,  i = 1 , 2  . . . .  
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